Influence of viscoelastic properties of cold recycled asphalt mixtures on pavement response
Cold Recycled Asphalt Mixtures (CRAMs)

- Reclaimed Asphalt Pavement (RAP)
 - Addition of fine virgin aggregates
- Bitumen stabilization
 - Foamed asphalt
 - Asphalt emulsion
- Active filler
 - Cement
 - Hydrated lime
Cold Recycled Asphalt Mixtures (CRAMs)

- Reduced consumption of virgin aggregates
- Reduced emission of polluting gases
- Decreased transportation costs (in-situ recycling)
- Greater reclamation levels of milled aggregates

(Copeland, 2010; Lee et al., 2012)
Source: Grilli et al. (2012)
- **Granular material**
 - Higher cohesive strength
 (Asphalt Academy, 2009)
 - Unbound granular material with similar void content
 (construction purposes)
 - Confining stress dependency
 (Fu et al., 2010; Guatimosim et al., 2018)
Viscoelastic material

- Stiffness dependent of temperature and load frequency
 (Godenzoni et al., 2017; Nivedya et al., 2018)

- CRAMs present flatter dynamic modulus master curves than HMA
 (Ebels, 2008)
• **Test section**

 • Fernão Dias highway (BR-381)
 • 2 test sections
 • 100 m length
 • Recycled base course materials
- **Test section**

<table>
<thead>
<tr>
<th>12.5 cm</th>
<th>12.5 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt concrete (AC)</td>
<td>Asphalt concrete (AC)</td>
</tr>
<tr>
<td>Foamed Asphalt Mixture (FAM)</td>
<td>Asphalt Emulsion Mixture (AEM)</td>
</tr>
<tr>
<td>Remaining Structure</td>
<td>Remaining Structure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25 cm</th>
<th>25 cm</th>
</tr>
</thead>
</table>
• Test section

 o Instrumentation

 PT 100 temperature sensor → 13 cm depth
• Materials and test methods

Asphalt Emulsion Mixture (AEM)
- 98% RAP
- 2% Portland-limestone cement
- Curing: 3d @ 60 °C (unsealed) + 3d @ 60 °C (sealed)
- Slow-setting cationic emulsion (Pen. 50/90)
- Emulsion: 3% (62.3% binder content)
- Moisture: 5.5%

Foamed Asphalt Mixture (FAM)
- 68% RAP
- 30% fine aggregate blend
- 2% Portland-limestone cement
- Curing: 40 °C until 60% of OMC
- Foam: 3% (Pen. 85/100)
- Moisture: 6.5%
- Water for foaming: 2.6%
- Wirtgen WLB 10S
- t1/2: 7.2s
- ER: 18x
• **Materials and test methods**

 o **Material characterization**

 Binder: $|G^*|$ and δ
 - Dynamic Shear Rheometer
 - 1 to 100 rad/s
 - 40 to 76 °C

 Mixture: $|E^*|$ and δ
 - Dynamic modulus test
 - 25 – 10 – 5 – 1 – 0.5 – 0.1 Hz
 - 4.4 – 21.1 – 37.8 – 54 °C
- **Materials and test methods**
 - **3D Move Software Analysis 2.1**
 - **Load:**
 - Single axle dual tire
 - 20 kN/tire
 - Tire pressure: 560 kPa
 - Circular contact area: $R = 0.107$ m

- **Temperature**
 - $V = 40$ km/h
 - $W(VE) \ B(VE)$

- **Mechanical behavior**
 - $V = 40$ km/h
 - $W30 \ B20$
 - $W(VE) \ B(VE)$
 - $W(VE) \ B(EL)$

- **Asphalt concrete (AC)**
 - (ν = 0.35)

- **Asphalt Emulsion Mixture (AEM)** or **Foamed Asphalt Mixture (FAM)**
 - (ν = 0.35)

- **Remaining Structure**
 - (ν = 0.45)
• **Results and discussion**

- AEM and FAM are less thermo-sensitive than AC

- High f_r

 - AC has greater stiffness

- Low f_r

 - FAM presents greater stiffness than AEM

Mechanical properties dominated by aggregate gradation

![Graph showing the relationship between reduced frequency and stiffness](image)
• Results and discussion

Asphalt Emulsion Mixture

Foamed Asphalt Mixture
• Results and discussion
• Results and discussion

<table>
<thead>
<tr>
<th>Asphalt Emulsion Mixture</th>
<th>Foamed Asphalt Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.90</td>
<td>9.12</td>
</tr>
<tr>
<td>10.11</td>
<td>7.29</td>
</tr>
<tr>
<td>9.19</td>
<td>4.13</td>
</tr>
</tbody>
</table>

Longitudinal strain (µε) vs Time (s)
• Results and discussion

Brown’s model:

\[
\log t = 0.5d - 0.2 - 0.94 \log v
\]

Loulizi et al. (2002)

- \(t \): Loading time (s)
- \(d \): Depth (0.124 m)
- \(v \): Vehicle speed (40 km/h)

\[t = 0.023 \text{ s} \]

Conversion from time to frequency domain:

\[
f = \frac{1}{2\pi t} \quad \rightarrow \quad f = 7.0 \text{ Hz}
\]
• Results and discussion

<table>
<thead>
<tr>
<th>Layer</th>
<th>W20 B10 (MPa)</th>
<th>W30 B20 (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>10000</td>
<td>4000</td>
</tr>
<tr>
<td>FAM</td>
<td>6000</td>
<td>5000</td>
</tr>
<tr>
<td>RM</td>
<td>118</td>
<td>118</td>
</tr>
</tbody>
</table>
Results and discussion

<table>
<thead>
<tr>
<th>Layer</th>
<th>W20 B10</th>
<th>W30 B20</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>10000 MPa</td>
<td>4000 MPa</td>
</tr>
<tr>
<td>FAM</td>
<td>6000 MPa</td>
<td>5000 MPa</td>
</tr>
<tr>
<td>RM</td>
<td>118 MPa</td>
<td>118 MPa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>W20 B10</th>
<th>W30 B20</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>10000 MPa</td>
<td>4000 MPa</td>
</tr>
<tr>
<td>AEM</td>
<td>6000 MPa</td>
<td>3500 MPa</td>
</tr>
<tr>
<td>RM</td>
<td>118 MPa</td>
<td>118 MPa</td>
</tr>
</tbody>
</table>

Diagram:

- **5 Hz**
 - AC
 - AEM
 - FAM

![Diagram showing moduli as a function of temperature](image-url)
• Results and discussion

Asphalt Emulsion Mixture

<table>
<thead>
<tr>
<th></th>
<th>W(VE) B(VE)</th>
<th>W(VE) B(EL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal strain (με)</td>
<td>10.90</td>
<td>24.03</td>
</tr>
</tbody>
</table>

Foamed Asphalt Mixture

<table>
<thead>
<tr>
<th></th>
<th>W(VE) B(VE)</th>
<th>W(VE) B(EL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal strain (με)</td>
<td>4.13</td>
<td>24.96</td>
</tr>
</tbody>
</table>
• Conclusions

✓ AEM and FAM are thermo-sensitive materials
✓ AC’s tensile and compression strains at the bottom of the layer are sensitive to temperature variation
✓ Considering CRAMs as elastic materials underestimates its bearing capacity
THANK YOU!
andre.kuchiishi@usp.br

Acknowledgements: