Assessment of Interlayer Bonding Properties with Dynamic Testing

Christiane Raab, Manfred N. Partl, A.O. Abd El Halim and Elise Fourquet
Introduction

Water from coring

Shear

Bohrkern 27, Sanierung 92
Debonding Mechanisms

Construction Paving

Climate & Environment

Traffic & Climate

Steel Roller
Surface Cracks
Joint

Water

Temp

Crack/Joint

Particle Loss

Pressure

Shear

Tension

Local Settlement

Asphalt

Steel Roller
Crack
• Leutner shear device (static)

\[T = 20^\circ C \]
\[v = 50 \text{mm/min} \]
\[\sigma_n = 0 \text{MPa} \]
\[\varnothing = 150 \text{mm} \]
Leutner shear evaluation

\[\tau = \frac{F}{A} \]

\[K = \frac{\tau}{s} \]
• Dynamic Shear Device (Dresden)
Dynamic shear evaluation

\[\tau = \frac{F}{A} \]

\[K = \frac{\tau}{s} \]

s: amplitude of relative displacement [mm]
Testing Sequence

<table>
<thead>
<tr>
<th>Start Temperature (Deform. Amplitude)</th>
<th>Normal Force</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10°C (0.03 mm)</td>
<td>0.9 MPa</td>
<td>0.1 Hz</td>
</tr>
<tr>
<td>10°C (0.07 mm)</td>
<td>0.6 MPa</td>
<td>1 Hz</td>
</tr>
<tr>
<td>30°C (0.11 mm)</td>
<td>0.3 MPa</td>
<td>5 Hz</td>
</tr>
<tr>
<td>50°C (0.15 mm)</td>
<td>0.0 MPa</td>
<td>10 Hz</td>
</tr>
<tr>
<td>-10°C (0.03 mm)</td>
<td>0.9 MPa</td>
<td>0.1 Hz</td>
</tr>
</tbody>
</table>

Bituminous mixtures — Test methods for hot mix asphalt — Part 48: Interlayer Bonding
<table>
<thead>
<tr>
<th>Layer No.</th>
<th>SMA/AC</th>
<th>MA/MA</th>
<th>PA/AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mix type</td>
<td>SMA 11</td>
<td>AC 22</td>
<td>MA 11</td>
</tr>
<tr>
<td>Binder Content [%]</td>
<td>3.2</td>
<td>3.2</td>
<td>7.8</td>
</tr>
<tr>
<td>Air void Content [%]</td>
<td>5.8</td>
<td>4.8</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Results Static Testing

Findings

- Shear stiffness highly temperature dependent
- Decreasing from 5 MPa/mm at -10°C to 0.25 MPa/mm at 50°C for SMA/AC
- Comparison at 20°C shows very similar shear stiffness around 1 MPa/mm for MA/MA and PA/AC
- Slightly higher shear stiffness for SMA/AC with 1.5 MPa/mm
Results Dynamic Testing

SMA/AC_2_1 / 1 Hz

MA/MA_1_2 / 1 Hz

SMA/AC_4_1 / 1 Hz

MA/MA_2_1 / 1 Hz

Shear stiffness (MPa/mm)

Normal stress (MPa)

-10°C
10°C
30°C
50°C
-10°C
Shear stiffness decreases with increasing temperature, but values are different than for static testing.

Decrease of stiffness of 96% comparing stiffness values of SMA/AC at -10°C and 50°C.

Stiffness increases with increasing normal stress.

Difference between the first and the last shear stiffness test result at -10°C is due to damage of specimen: often appears at temperature of 50°C.

Comparison of 2 specimens of same material show big scattering between 17% and 50%.

Ranking difficult. Here: MA/MA > SMA/AC > PA/AC.
Dynamic testing allows applying the time (frequency) and temperature relationship which enables to construct the Master curve for shear stiffness K with the help of the time-temperature-superposition principal.

The shear stiffness Master curve for MA/MA, different normal stresses and a reference temperature of 20°C shows the dependency on normal stress.
Conclusions

- Shear stress and shear stiffness are temperature dependent.
- Static and dynamic testing show similar trends, but values are different for the same test conditions (temperature and normal load).
Conclusions

- Static and dynamic tests do not have the same goal and output:
 - Static testing gives interlayer bond properties at failure and is used for quality assessment
 - Dynamic testing aims at the interlayer bond properties during the service life of pavement
Conclusions

• Results from dynamic testing are promising, but method still needs evaluation before adopting for standardization:
 - Proposed deformation amplitudes and temperatures have to be modified according to the tested material combination
 - Number of test specimens per material has to be increased
First Announcement

9th International Conference on Maintenance and Rehabilitation of Pavements
July 1st – July 3rd, 2020

Call for Abstracts: Spring 2019
Reserve date now! More details will be announced later.
Chair: Christiane Raab, Empa, Dübendorf, Switzerland

mairepav2020.empa.ch
See you 2020 in Switzerland